

Poster #: PT-012

An exemplar of a systems pharmacology approach for a detailed investigation of an adverse drug event as a result of drug-drug interactions

> ASCPT Annual Meeting 2017 Washington, DC

Sarah Kim¹, Gezim Lahu², Lawrence J. Lesko¹, Mirjam N. Trame^{1,*}

¹ Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Orlando, FL
² Takeda Pharmaceuticals International GmbH, Zurich, Switzerland
*Corresponding author: mtrame@cop.ufl.edu

Systems Approach to Drug Safety utilizing Adverse Event Databanks

Systems Approach to Drug Safety utilizing Adverse Event Databanks

- Post-market surveillance databank of ADR by the FDA
- Rich source of ADR information submitted voluntarily by drug manufacturers, healthcare professionals and consumers
- ADR reports evaluated by clinical reviewers at the CDER or CBER

Evidex[™]

Advera Health

FAERS

- Maps FAERS to AE and outcome costs
- Provides RxCosts[®] to determine direct costs of adverse events, RxSignal[®] for predictive notification of pending regulatory action, and RxScore[®] - a drug safety scorecard

UNIVERSITY of FLORIDA

- MH Effect[™] Molecular Health
- Maps FAERS to chemical and biological sources to integrate knowledge for hypothesis generation towards the underlying molecular pathways and targets of the ADR

Systems Approach to Drug Safety utilizing Adverse Event Databanks

MH EffectTM

Systems Approach to Analyze Drug-ADR

Mapping FAERS to chemical and biological sources integrates knowledge for hypothesis generation towards the underlying molecular pathways and targets of the ADR for safety predictions.

College of Pharmacy

UNIVERSITY of FLORIDA

Proportional Reporting Ratio (PRR):

a statistical method used to assess statistical associations between drugs and events of interest using number of case reports

	N w/ event of interest	N w/o event of interest
N w/ drug of interest	а	b
N w/o drug of interest	С	d

N = number of case reports.

PRR =
$$\frac{a/(a+b)}{c/(c+d)}$$
.

Reference: S.J. Evans *et al*. (2001) Pharmacoepidemiology and Drug Safety, 10(6): 483-486.

- 1/3 of new FDA drug approvals are in oncology since 2014 with several of these being categorized as targeted therapy drugs (TTDs)
- > Clinical response of cancer patients to TTDs depends on:
 - 1) Efficacy (benefit) variables \rightarrow on-target effects
 - Influenced by sensitivity of <u>tumor</u> cells, molecular properties of tumors, and tumor microenvironment
 - 2) Safety (risk) variables \rightarrow off-target effects
 - Influenced by sensitivity of the <u>host</u>, including intrinsic factors such as genetic metabolic polymorphisms and renal function, and extrinsic factors such as drug-drug interactions Reference: T. Force *et al.* (2007) Nat Rev Cancer, 7(5): 332-344.

Efficacy of TTDs compromised by one additional <u>host</u> factor
 96% of cancer patients are concomitantly given 1-6 additional medications
 Serious drug-drug interactions

Starting with a case study of a typical breast cancer patient receiving the following prescriptions:

Trastuzumab (Herceptin[®]) TTD (Target: HER2/neu)

Doxorubicin (Doxil[®] and Adriamycin[®]) Chemotherapy, Anthracycline

Tamoxifen (Nolvadex[®] and Soltamox[®]) Hormonal therapy

> Paroxetine (Paxil[®], Pexeva[®], and Brisdelle[®]) Antidepressant

Lapatinib (Tykerb[®]) TTD (Target: HER2/neu, EGFR)

Safety Assessment Overview

4059 R	actions							
Death								
Diarrho	ea							
Disease	e progress	ion						
Nausea								
Fatigue								
Dyspno	ea							
Vomiting]							
0 200	400	600	800	1000	1200	1400	1600	

Cardiotoxicity: N = 196 (Ranking 69), PRR = 47.06 (Ranking 2 among the top 69)

Final patient outcome due to AEs

<u>Top 7 Indications for which Trastuzumab is prescribed</u>

Cohort Search Term: Trastuzumab (#1)

8

Safety Assessment Overview

Top AEs (ranked by the number of cases (N))

Cardiotoxicity: N = 196 (Ranking 69), PRR = 47.06 (Ranking 2 among the top 69)

Final patient outcome due to AEs

Cohort	Total N of all AEs	N of Cardiotoxicity	PRR with Cardiotoxicity	95% CI PRR with Cardiotoxicity
Trastuzumab	16680	196	47.06	40.59 - 54.56
Doxorubicin	35850	263	30.63	26.87 - 34.91
Com. T+D	1157	36	113.12	81.73 - 156.57

N = number of case reports, AE = adverse event, PRR = Proportional Reporting Ratio, CI = confidence interval.

Major Molecular Mechanisms of Trastuzumab-induced Cardiotoxicity

	Ranking	Molecular Mechanism	PRR (95% CI)			
I	1	Signaling by ERBB2 (HER2)	141.63 (140.31 – 142.96)			
	4	Signaling by ERBB4	64.04 (63.64 – 64.44)			
	9	ERBB receptor signaling network	62.40 (62.01 – 62.78)			
	29	ERBB4 signaling events	25.42 (25.32 – 25.52)			
		cont'd				
	34	Bh3-only proteins associate with and inactivate anti-apoptotic BCL-2 members	18.84 (16.42 – 21.61)			
		conťd				
	37	Activation of BAD and translocation to mitochondria	18.71 (16.31 – 21.46)			
		cont'd				
	40	Role of mitochondria in apoptotic signaling	18.10 (15.78 – 20.76)			
-	PRR = Proportional Reporting Ratio, CI = confidence interva					
			∃ Total 549 molecular mechanism Ranked by PRR			

Sarah Kim • Center for Pharmacometrics and Systems Pharmacology • 03-17-2017

10

Combination Therapy: Trastuzumab and Doxorubicin

T lymphocyte Trastuzumab	Cohort	Molecular Mechanism	Ν	PRR	95% CI PRR
ADCC ERBEZ	Trastuzumab	BH3-only proteins associated	100	18.84	16.42 – 21.61
AKT Nucleus	Doxorubicin	with and inactivate anti- apoptotic BCL-2 members		5.89	4.47 – 7.78
PERK 7 BCLX BCLX Caspase activation	Com. T+D			24.60	▲ 19.53 – 31.0
gura from T. Earca at al. Nat Pay Cancer (2007) 7(5): 222 244	Trastuzumab		100	18.71	16.31 – 21.46
	Doxorubicin	translocation to mitochondria	42	5.85	4.44 – 7.72
oss of mitochondrial membrane potential	Com. T+D		24	24.43	▲ 19.39 – 30.78
Irough BCL-2 family	Trastuzumab		35	0.58	0.43 – 0.78
	Doxorubicin	PPAR α activates gene expression	94	1.15	0.98 – 1.35
GC-1 β proteins	Com. T+D	CAPICCOICH	4	0.36	▼ 0.14 – 0.90
itochondrial ogenesis and	Trastuzumab	Role of mitochondria in apoptotic signalling	100	18.10	15.78 – 20.76
Inction Mitochondrial dysfunction	Doxorubicin		42	5.66	4.29 - 7.47
	Com. T+D		24	23.64	18.76 – 29.79

N = number of case reports, PRR = Proportional Reporting Ratio, CI = confidence interval, \blacktriangle = higher than Cohort-Trastuzumab, **v** = lower than Cohort-Trastuzumab, **orange** = harmful effect, green = protective effect.

Figure from P. Vejpongsa and E.T.H. Yeh J American College Cardiol (2014) 64(9): 938-945.

College of Pharmacy

UNIVERSITY of FLORIDA

Discussion and Conclusions

Hypothesis: The combination therapy of trastuzumab and doxorubicin may induce a synergistic effect of mitochondrial dysfunction in cardiomyocytes through different molecular pathways of the BCL-2 family, PPAR α and PPAR β proteins, leading to an increased risk of developing cardiotoxicity.

What did this Systems-based approach provide versus a non-mechanistic approach?

This systems-based approach provides a process to better map the mechanism of drug-drug interactions to targets and pathways

Inform Drug Development Pipelines

Acknowledgement

Dr. Mirjam N. Trame Dr. Lawrence J. Lesko Dr. Sonja Hartmann

Thank you very much for your attention!

Dr. Gezim Lahu Dr. Majid Vakilynejad